9:20-9:40

GW近似とその拡張による固体の電子状態計算

^{1,2}佐久間怜・2菅原健人・2田中友理・3F. Aryasetiawan

¹千葉大学大学院融合科学研究科 ²千葉大学工学部ナノサイエンス学科 ³Lund University

Contents

GW approximation including spin-orbit coupling

GW approximation for localized states

GW approximation

- Tool for the quantitative description of quasiparticle band structures
- Starting point for (first-principles) many-body theory
 - ► GWF (Y. Takada)
 - GW+DMFT (S. Biermann et al.)

 $\Sigma = GW$ $W = \varepsilon^{-1}V$ $\varepsilon = 1 - VP$ P = GG $G = G_0 + G_0 \Sigma G$

Schilfgaarde et al. (2006)

Flow-chart of G₀W₀

GW approximation including spin-orbit coupling

Collaborators: C. Friedrich (FZ-Juelich) S. Bluegel (FZ-Juelich) T. Miyake (NRI-AIST)

Motivation

Intrinsic spin-Hall effect: (Murakami et al., Science 2003)

J-insulator: Sr₂IrO₄ (Kim et al., PRL 2009)

Spin-dependent GW

Spin-dependent many-body Hamiltonian

$$H = \int \psi_{\alpha}^{+}(r) h_{\alpha\beta}^{0}(r) \psi_{\beta}(r) d^{3}r$$

+ $\frac{1}{2} \int \psi_{\alpha}^{+}(r) \psi_{\beta}^{+}(r') v_{\alpha\delta;\beta\gamma}(r,r') \psi_{\gamma}(r') \psi_{\delta}(r) d^{3}r d^{3}r'$

Spin-dependent GW approximation

F. Aryasetiawan and S. Biermann, Phys. Rev. Lett. 100, 116402(2008); J. Phys. : Condens. Matter 21, 064232(2009)
$$\begin{split} \Sigma_{\alpha\beta}(1,2) &= i\sigma_{\alpha\gamma}^{I} G_{\gamma\eta}(1,2) W_{JI}(2,1) \sigma_{\eta\beta}^{J} \\ &= iG_{\gamma\eta}(1,2) W_{\eta\beta,\alpha\gamma}(2,1) \\ W_{IJ}(1,2) &= v_{IJ}(1,2) + \int d(34) v_{IK}(1,3) P_{KL}(3,4) W_{LJ}(4,2) \\ P_{IJ}(1,2) &= -i\sigma_{\alpha\beta}^{I} G_{\alpha\gamma}(1,2) \sigma_{\gamma\eta}^{J} G_{\eta\beta}(2,1) \\ & (I=0,x,y,z, \quad \sigma^{0}=1) \end{split}$$

Spin-dependent GW

Special case: (one-particle) spin-orbit coupling + Coulomb interaction

$$h^{0}_{\alpha\beta}(r) = h^{0}(r)\delta_{\alpha\beta} + v^{SOC}_{\alpha\beta}(r)$$
$$V_{\alpha\beta;\gamma\eta}(r,r') = \frac{1}{|r-r'|}\delta_{\alpha\beta}\delta_{\gamma\eta}$$

GW + SOC

$$\Sigma_{\alpha\beta} = G_{\alpha\beta}W$$

$$\varepsilon = 1 - VP$$

$$P = \sum_{\alpha\beta} G_{\alpha\beta}G_{\beta\alpha}$$

$$W = \varepsilon^{-1}V$$

- The self-energy and Green's function now have off-diagonal matrix elements.
- The polarization P is calculated from the band dispersion including SO splitting

Hg Chalcogenides (HgX, X=S, Se, Te)

Motivation

Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells

B. Andrei Bernevig,^{1,2} Taylor L. Hughes,¹ Shou-Cheng Zhang¹*

Science 2006

Quantum Spin Hall Insulator State in HgTe Quantum Wells

Markus König,¹ Steffen Wiedmann,¹ Christoph Brüne,¹ Andreas Roth,¹ Hartmut Buhmann,¹ Laurens W. Molenkamp,^{1*} Xiao-Liang Qi,² Shou-Cheng Zhang²

Science 2007

Inverted band structure (without SOC)

Inverted band structure (with SOC)

"conduction" bands

LDA results

		HgS	HgSe	HgTe
E_{g}	LDA	-0.66	-1.27	-1.20
	Expt.	-0.15, -0.11	-0.274	-0.29, -0.30
0				
Δ				
	LDA	-0.12	+0.23	+0.78
	Expt.		+0.39,+0.38	+0.91

GW results

		HgS	HgSe	HgTe
g	LDA	-0.66	-1.27	-1.20
	Expt.	-0.15, -0.11	-0.274	-0.29, -0.30
	GW	-0.02	-0.58	-0.60
	LDA	-0.12	+0.23	+0.78
	Expt.		+0.39,+0.38	+0.91
	GW	-0.19	+0.32	+0.91

 \boldsymbol{E}

Self-energy correction

$$\Delta E_n^{QP} \equiv E_n^{QP} - E_n^{DFT} = \left\langle \psi_n \left| \Sigma(E_n^{QP}) - V_{xc} \right| \psi_n \right\rangle$$

"conduction" bands

SO-splitted bands

Possible application: Searching new topological insulators

S. Chadov et al., Nature (2010)

Summary

SOC-included GW approximation is proposed

Application to Hg chalcogenides shows:

- Improvement of the negative "band gap"
- Enhancement of spin-orbit splitting
- State-dependent self-energy correction