新学術領域「コンピューティクスによる物質デザイン: 複合相関と非平衡ダイナミクス」 16/Mar/'12

金表面に吸着されたチオール単分子層の コヒーレント振動の実時間計測 Real-time Measurement of Coherent Molecular Motion of Benzenethiol Monolayer Film on Gold Surface

首藤健一^{a,*)}、土井幸司郎^{a)}、片山郁文^{a)}、北島正弘^{b)}、武田淳^{a)}

a) 横浜国大・エ. b) 防衛大・応物 *) ken1@ynu.ac.jp 新学術領域「コンピューティクスによる物質デザイン: 複合相関と非平衡ダイナミクス」 16/Mar/'12

光誘起反応、光応答 Laser, SR; cw反射分光
シリサイド/シィケート形成 XPS, STS, STATE
STM誘起反応 STM, VASP
半導体上有機物 UPS, 2PPES, Gaussian

fs-laser

測定方法 液相 表面吸着相 干渉・変調

コヒーレント振動 -光応答-

(1) ポンプ光で格子振動を励起

(2) 格子変形によってプローブ光の反射率変化を検出

光吸収率測定

Pump-probe

液層ベンゼンチオール(BT)

Organic Thin Films

Organic-molecular devices

Discreet Electronic States
Response to External Field *e.g.* Distortion by Gas
Photochromic Material
(1) Chem. Mater., 23, 1061–1069 (2011).
(2) J. Am. Chem. Soc., 131, 865-870 (2009).

Self-assembled monolayer

- Easy to build
- Orientation Preference
- Interaction?

molecule-molecule molecule-substrate

Coherent Motion by Electronic Excitation

Experimental

Specimen

Au deposition on Si(001) (Plasma sputter in vacuum)

Adsorbed Benzenethiol on Au-film

Detection Surface-sensitive to Monolayer Molecular Motion in Real-times

時間分解FFT-時間強度変化-

Time-resolved Spectral Intensity

Adsorbed Layer

Time-resolved FFT Window:Hanning function width 0.3ps

F.T. of whole signal

Time-course of intensity of each component

> Liquid vibrations fluctuate in-phase

Different Modulation

Time-course of Intensity in Liquid

Simple Beat: Sum of Close Modes ----> Independent Vibration

Time-course of Initial Phase in Liquid

Initial Phase ϕ in a Sinusoidal Wave

Fourier Component

 $E = Asin(\omega t + \phi)$

The two componts have constant ϕ .

Two modes vibrate independently.

Time-course of Initial Phase in Adsorbed Layer

Interference is not simple summation of three componensts

Time-course of Initial Phase in Adsorbed Layer

Two modes has phase shift along time.

Interaction of the two out of the close three modes.

Surface vibronic modes in Adsorbed Layer

Two Interactiong Modes: Expanding of Odd/Even Carbons Due to Electronic? Or Configurationally?

Numerical Analysis

Summary

<u>ベンゼンチオール 超高速計測</u>

-時間分解計測 =フーリエ成分 → 振動 対称・非対称で強度比相違

単分子吸着層 = 反射配置:表面敏感計測 = 重ね合わせ → ビート = 吸着層では位相変調 →偶数・奇数変形で結合 → 非線形結合で説明

Liquid

