GPUでの交換相互作用

平面波基底第一原理計算プログラム xTAPPへの実装

鳥取大学 工学部 吉本 芳英

交換相互作用

- 電子間相互作用の近似の順位
 - I. 電子密度間のクーロン相互作用
 - 2. |次の簡約化密度行列による交換相互作用
 - 3. 電子相関
- 局所密度近似では2.以降が近似

密度汎関数近似の発展

- 局所密度近似
 - 経済的であるが、絶対精度は万能でない
- 拡張:交換相互作用の計算を含む近似手法 「hybrid型」
 - PBE0, B3LYP, HSE, LC など
- 交換相互作用の計算コストは大きい

交換相互作用の計算

$$E_x = -\frac{1}{2} \sum_{i,j,\sigma} \int d\mathbf{r} d\mathbf{r}' \frac{\psi_{i,\sigma}^*(\mathbf{r}) \psi_{j,\sigma}^*(\mathbf{r}') \psi_{j,\sigma}(\mathbf{r}) \psi_{i,\sigma}(\mathbf{r}')}{|\mathbf{r}' - \mathbf{r}|}$$

$$V_x[\psi_{i,\sigma}](\mathbf{r}) = -\sum_j \int d\mathbf{r}' \frac{\psi_{j,\sigma}^*(\mathbf{r}')\psi_{i,\sigma}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \frac{\psi_{j,\sigma}(\mathbf{r}')\psi_{j,\sigma}(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

静電ポテンシャルの形

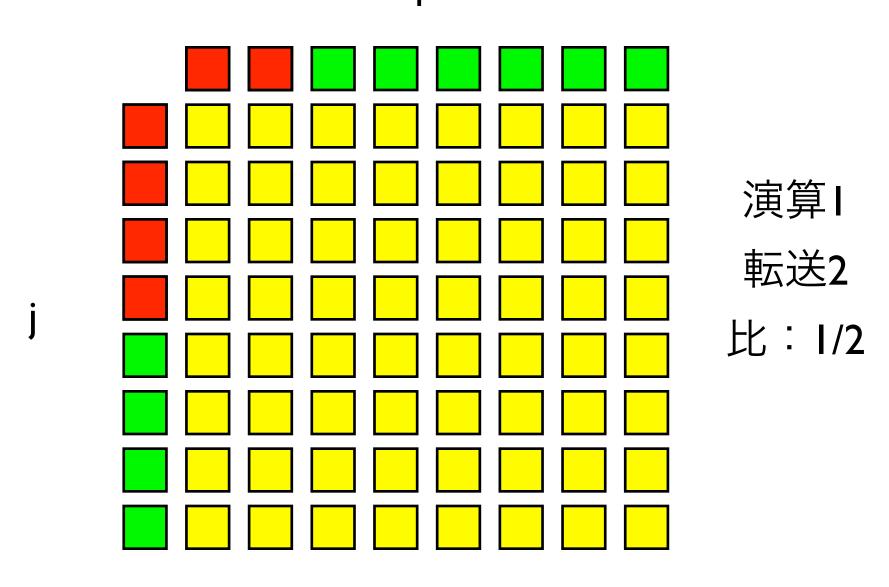
$$E_x = \frac{1}{2} \sum_{i,\sigma} \int d\mathbf{r} \psi_{i,\sigma}^*(\mathbf{r}) V_x[\psi_{i,\sigma}](\mathbf{r})$$

交換相互作用の計算

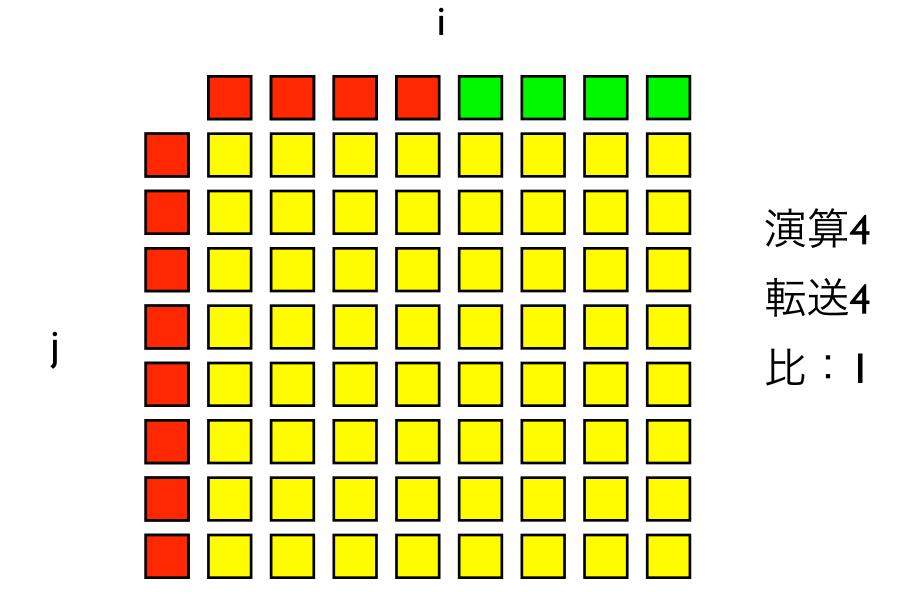
- i,iのペア
 - $\psi_{i,\sigma}^*(\mathbf{r})\psi_{i,\sigma}(\mathbf{r})$ から「ポテンシャル」
 - FFTを使う:O(N_A log N_A)
- iーつにつき、「ポテンシャル」はN個
- iはN個

全部でO(N_A³ log N_A) 計算量が大きい

GPUの活用


- CPUとの比較
 - 演算能力 大
 - メモリバンド幅 大
 - メモリ量 小
- メモリバンド幅:FFTを高速計算
- デバイスへの転送が必要

問題点


- CPU・GPU間のデータ転送はかなり遅い
 - ~5 GB/s、行き帰りが必要
 - CPUのメモリバンド幅は>20 GB/s
- 一回のFFTだと転送時間の元が取れない
 - Xeon X5690 で1283のFFTに8.5 ms
 - 5 GB/sで1283の転送1回に6.7 ms

計算のブロック化

- i,jのペアについて計算が必要
 - 入力データはN個、演算はN²個、 結果データはN個
- Nыk個 X Nыk個ずつブロック化して計算

i,j のペアを一つずつ順番に処理

i,j のペアを4つずつグループごとで処理

演算/データ転送

- N_{blk} X N_{blk}でブロック化
- 一ブロックあたり
 - 演算量はNыk²倍
 - データ転送量はNыk倍
 - 演算/データ転送はNыk倍
- データ転送を目立たなくできる

使用GPU

- AMD Radeon HD 6950 2GB
 - 俗精× CUDA → OpenCL
 - ~2.6 万円
- NVIDIA Tesla C2000シリーズと同等の性 能でずっと安い
 - Tesla C2070: 515 GFLOPS、144GB/s、~21 万円
 - Xeon X5690:83 GFLOPS、32GB/s、~I4 万円

ベンチマーク条件

- CPU: Xeon X5690 (6core, 3.46GHz)
- GPU: AMD Radeon HD 6950 2GB
- Infiniband QDR
- 8 CPU vs 8 GPUで比較
- Silicon 216原子, Gamma 点
- プログラムパッケージxTAPPを基礎
- ブロックサイズ20

ベンチマーク結果

ISCF時間

平面波のカット オフ波数 [a.u.]	3.6	4.0	4.8	5.0	5.4	6.4
FFTメッシュ	72 ³	80 ³	96 ³	1003	1083	128 ³
Xeon X5690 [s]	378	549	994	1188	1583	2255
Radeon HD 6950 [s]	169	297	342	500	534	749
加速率	2.23	1.84	2.91	2.37	2.96	3.01

ベンチマーク結果

- 最大3倍の高速化
 - 十分に大きなデータについては バンド幅律速
 - I60/32 = 5倍が理想性能比
- 基数5が苦手?

AMD vs NVIDIA

ブロック演算部のみでの比較

	Radeon HD 6950	Tesla C2070	
コアの経過時間 [s]	5.43	5.01	

• 128³ FFT メッシュ

条件

- ブロックサイズ 20
 - AMDAPPML 2.5 vs CUFFT 4.0

ブロック演算部の中身

経過時間 [s]	データ 転送	FFT	その他の GPU 演算	その他
Radeon HD 6950	0.53	3.09	1.05	0.76
Tesla C2070	0.55	3.05	1.22	0.19

• 128³ FFT メッシュ

条件

• ブロックサイズ 20

AMDAPPML 2.5 vs CUFFT 4.0

まとめ

- GPUを用いて交換相互作用の計算を高速化
- Xeon X5690 vs Radeon HD 6950で最大3倍
 - AMD Radeon HD 6950は2.6万円
- ブロック化でCPU・GPU間のデータ転送に 必要な時間を小さくした