金属ナノワイヤにおける分散力の非加算性

Non-additivity in metallic tri-wire binding

前園涼

Ryo Maezono

北陸先端科学技術大学院大学・情報科学研究科

School of Information Science, Japan Advanced Institute of Science and Technology, Nomi Ishikawa 923-1292

We have investigated the non-additive contribution to the binding energy of three metallic wires modeled by 1-D homogeneous electron gases. The three-wire contribution is evaluated in the equilateral triangle geometry by subtracting the bi-wire interaction energies from the total energy of the tri-wire configuration. The three-wire contribution scales according to the power law $\delta E \sim d^{-\alpha}$ (*d* being the wire separation) with exponents $\alpha(r_s)$ being smaller than 3 and slightly increasing with r_s from 2.46 at $r_s = 1$ to 2.91 at $r_s = 10$, where r_s is the density parameter of the 1-D electron gases. We find that the contribution falls off quite slowly, implying it could be physically important.

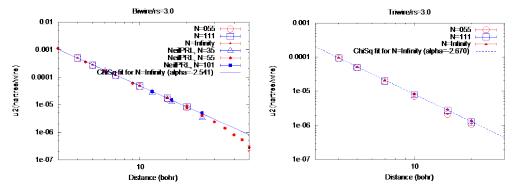


Figure. : Asymptotic behavior of the bi-wire interactions u_2 (left panel) and the non-additive contribution u_3 (right panel) at $r_s=3.0$